Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth
Abstract
Algoritma yang umum digunakan dalam proses pencarian frequent itemsets (data yang paling sering muncul) adalah Apriori. Tetapi algoritma Apriori memiliki kekurangan yaitu membutuhkan waktu yang lama dalam proses pencarian frequent itemsets. Untuk mengatasi hal tersebut maka digunakanlah algoritma FP-Growth. Dalam makalah ini akan dibahas penerapan Apriori dan FP-Growth dalam proses pencarian frequent itemsets. Penggunaan FP-Tree yang digunakan bersamaan dengan algoritma FP-growth untuk menentukan frequent itemset dari sebuah database, berbeda dengan paradigma Apriori yang memerlukan langkah candidate generation, yaitu dengan melakukan scanning database secara berulang-ulang untuk menentukan frequent itemset. Makalah ini juga menyajikan pembahasan mengenai perbandingan kompleksitas waktu antara algoritma FP-growth dengan Apriori dan hasil dari perbandingan algoritma tersebut.