Pemodelan Topik Menggunakan Metode Latent Dirichlet Allocation dan Gibbs Sampling
Abstract
Pemodelan topik adalah suatu alat yang digunakan untuk menemukan topik laten pada sekelompok dokumen. Pada penelitian ini dilakukan pemodelan topik dengan menggunakan metode Latent Dirichlet Allocation dan Gibbs Sampling. Enam artikel berita Bahasa Indonesia telah dikumpulkan dari portal berita detiknews dengan menggunakan metode Web Scrapper. Artikel berita dibagi menjadi dua kategori utama yaitu, narkoba dan COVID-19. Analisis model LDA dilakukan dengan menggunakan metode koherensi topik pengukuran skor UCI dengan hasil penelitian menyebutkan diperoleh lima buah topik optimal pada kedua konfigurasi pengujian.